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Abstract

This essay is devoted to Unsupervised Competitive Learning (USCL) in
neural networks. It is divided in five sections, each describing specific traits
of this learning procedure. The introduction presents some key features of
USCL from an overarching perspective.

Making use of a toy-like network, fundamental properties of USCL are
discussed in the second section. A full fledged application of USCL aimed at
extracting societal similarities and differences among countries is developed
in the third section. The section four and five highlight two properties of
neural networks developed according to USCL.

How do we map features onto categories? An attempt of my own making,
related to interactions putatively established between philosophy and artifi-
cial intelligence, concludes the essay.

Two preliminary warnings are in order:

It must be emphasized at the outset, in all modesty, that the objects pre-
sented in the following are infinitely simpler than biological systems of nerves
and brains found in nature.

Authors usually avoid nouns such as neuron or synapse while designating
software structures mimicking biological organs, and prefer surrogates such
as units or connexions. Fully aware of my effrontery, I dare to use the bi-
ological wording in the sequel. A thesaurus provided in annex 7.3 aims at
delivering matches between the terms and concepts introduced below.
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1 Introduction

Bionic is the term used to describe the approach of an engineer who draws
inspiration from living nature when planning and realizing a machine or
technical system. Leonardo da Vinci observes bats when he imagines his
flying machines. The first aircraft designers try to imitate the flapping of
birds’ wings. Numerous modern mechanical and architectural constructions
are inspired by motifs from the vegetal and animal worlds. What about the
structures of the brain? These were gradually revealed in the course of the
20th century, and the first models of neural networks inspired by these dis-
coveries emerged in the 1950s as a result of the invention of the computer.

As virtual structures, neural networks obviously only exists in memories
of computers, thus the question arises as to where their bionic peculiarity
remains hidden. It consists, among other things, in the fact that the network
behaves like a dynamic, integral, holistic memory in which the information is
no longer stored byte by byte, as would be the case in a computer memory,
but is distributed over the entire network.

Another essential bionic property is the learning capability that the net-
work must display in order to fulfill its task. In this learning phase, the
network is confronted with a set of patterns or stimuli, or situations (see
annexes 7.2 and 7.4) extracted from the outside world. Memorization con-
sists in gradually implementing the information gained from observing each
of these patterns into the synapses of the totality of neurons in the network.
In this type of so called unsupervised and competitive learning process, the
network is not presented with ready-made answers it should have to repro-
duce, but it is forced to organize itself, obeying a simple scheme by which
the neurons compete among themselves in an effort to grasp the essence of
the patterns presented1. This type of learning was observed clinically in the
1960s, and Finnish engineer Teuvo Kohonen formalized it as an algorithm
by the end of the 1980s.

1In contrast, supervised learning (usually dubbed Deep Learning) is another neural
algorithm whose biological counterpart occurs primarily in the limbic regions of the brain.
It consists of responding in an optimal way to a stimulus for which the response is known.
Reflexes are based on this type of learning. The associated networks are called ”percep-
trons”, and the learning type associated with them is called ”back-propagation of the
gradient”.
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1.1 Brief historical note

For me, everything started in 1992 at a third cycle course given at the Ecole
Polytechnique Fédérale de Lausanne - EPFL - and titled ”Réseaux de neu-
rones naturels et artificiels”, [2]. On this occasion, I developed toylike neural
networks aimed at evaluating weather fields and classifying them with the
help of a micro expert system written in Prolog. At that time, formal ”ar-
tificial intelligence” based on logical and declarative languages such as Lisp
on the syntactical, or Prolog on the semantical edge were praised and im-
plemented in so called expert systems. Later, working together with Daniel
Cattani and Pierre Eckert at the Swiss Meteorological Institute, we started
to develop networks able to cluster meteorological ensemble forecasts, [3],
whereby the seminal book by Herz, Krogh and Palmer, [1], was our ultimate
reference in the field. Neural based assessment systems based on ECMWF
ensemble forecasts were implemented in the operations suites of Meteo Swiss2

by the end of the century and have been routinely operated since then.
Some of the properties of these meteorological neural networks are pre-

sented in Annex 7.1. In their simplest architecture (Figure 1), such neural
networks consist in a square array of 12 x 12 neurons, each neuron being
equipped with a bundle of 200 synapses that are both information sensors
and analogue storage elements. The synapses are projected from each neu-
ron onto the vertices of a grid of 10 x 10 points on a map of the whole of
Central Europe. References [4 and 5] provide comprehensive information in
this respect.

Lately, Making use of the time at disposal after retirement, I started re-
furbishing old and forsaken pieces of code into a comprehensive and modular
structure written in the Wolfram’s Mathematica language. First elements of
this application had been gradually programmed during the 30 past years in
the Pascal, C++ and finally Mathematica versions available at each corre-
sponding epoch. All of this resulted in a clutter of inefficient pieces of software
that I decided to refurbish during the autumn and the winter 2022-2023. All
the figures hereafter presented have been established with this newly written
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Figure 1: Schematic representation of a neural network proceeding according
to USCL. Each small cube symbolizes a neuron. Its synapses, simultaneously
sensors and memory elements, are sketched as purple descending lines. In
this depiction, the drawing ”on the ground” represents a weather map.

piece of software whose modular structure is sketched in Annex 7.4.

2 Fundamental properties from a toy network

The best possible way to describe USCL consists in starting with the toy
example of a square network, similar to the one presented in Figure 1, this
time, however, with 10 x 10 neurons.

Two surfaces, or ”spaces”, characterize the network. The first one is the
network, or grid itself, as pictured in Figures 1 and the left panel of 2. The
second space, on the right panel, is abstract. I name it synaptic, or semantic
space. It is the vector space in which the synapses take their values. As each

2A new name for the venerable Institute
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neuron has the same number of synapses, the geometrical dimension of the
space is this number. As the synaptic weights are real numbers, it is defined
on the field R2 of the real numbers. Each neuron is represented in this space
as a point (a vector) whose coordinates are its synaptic weights. As we are
now working with a network whose neurons are equipped with two synapses
only, the synaptic space is two dimensional, as featured on the right panel
of figure below. The edges drawn on both panels correspond, in a way that
we now describe. A comprehensive interpretation of the synaptic space as
a semantic space will take its sense later in Section 5, with more complex
applications of the algorithm.

Figure 2: Left, Neural Network. Right, synaptic, or semantic Space. Two
distance will be implemented, the first one, designed by δ, will operate on the
network. The second one, named D, will operate on the synaptic space. This
figure is the exact correspondent of the Figure 9.

In this almost trivial configuration, the task to be learnt is a set of 1000
couples of numbers randomly generated in a [0, 1]× [0, 1] square, as pictured
on the upper left panel of Figures 3 and 4. This dataset is provided as
a matrix X whose dimensions is 1000 × 2 in our case. These points or
coordinates are located in the synaptic space related to the task to be learned.

As one notices, the distribution of the points, or stimuli, is uniform on
Figure 3, and it is bimodal on Figure 4.

The upper right and lower left panels of both figures show the state of
the network after the termination of the learning process. To each vertex on
the panels corresponds a neuron, {i, j} as labelled on the diagrams, located
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Figure 3: Uniform distribution of the learning task. 2 synapses network.

in the synaptic space at the point defined by its synaptic weights. The
edges between neurons describe the neighborhood relation among neurons,
as pictured on Figure 1 and the left panel of Figure 2.

Progressing in the description of the figures, the lower bluish panels de-
scribe one again the state of the network after completion of the learning
process, this time, however, without the stimuli distributions. The red dots
represent the locations of the neurons in the synaptic space, the edges on the
left panels the connections among them. What matters now on the lower
panels of Figures 3 and 4 is the Voronöı tessellation in the background. Each
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Figure 4: Bimodal distribution of the learning task. 2 synapses network.

tile represents the ”domain on influence” of a corresponding neuron in the
synaptic space and the whole tessellation is akin to a partition of the space
in districts allocated to the neurons.

The spread of the districts happens to be uniform on Figure 3, in accor-
dance to the uniformity of the the task having been learned. On the contrary,
two clusters of crowded districts appear on Figure 4, together with a ring of
almost empty districts towards the frontiers, well reflecting the bi-modality
of the initial task.

The network happens to satisfy a property closely related to biological
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reality: as a simple example, the somato-sensorial map of our body located in
the cortical area of our brain is much more accurate for frequently simulated
and thus more sensitive areas (the tongue), than for less sensitive areas (the
back)3. As shown in previous figures, if the statistical distribution fields
Ψ presented at the time of the learning is not uniform in the (synaptic)
input space, the spatial organization of the synaptic weights reflects this
statistical inhomogeneity. The location of the synaptic weights aggregate in
areas where stimuli have been frequent and they are sparse in areas rarely
visited during the learning process. Thus the network N is more accurate in
frequently simulated areas, a property that can be formalized in the following
way: if the Voronöı tile associated to a neuron {i, j} is named V{i,j} and if
prob(Ψ ∈ dσ) is the probability of finding a stimulus of the Ψ field in the
elementary volume dσ of the synaptic space, then the area (volume) of a the
Voronöı tile is small in a frequently visited area, large in seldomly visited
areas, and satisfies:

∀{i, j} ∈ N :

∫
V{i,j}

prob(Ψ ∈ dσ) dσ = constant

The size of each V{i,j} domain is the tuning parameter in the previous
expression. As a consequence, the system happens to be suited to distinguish
minute differences between patterns that are common in the learning task,
and not so able to accurately discriminate seldom features.

This approach will enable us to define in following Section 3.4 the entropy
of the learning process, that will be implemented as a measure of its efficiency.

2.1 Learning sequence

Following Figure 5 exhibits three phases of the learning process for both
distributions, uniform on the left, bimodal on the right column. The initial
state of the network is shown in the upper row: the synaptic weights have
been given small random values. Accordingly, they are all crowded in the
center of the square. In the middle row, at one third of the learning process,
the networks are unfurling and spreading according to the respective distri-
butions of the stimuli in the synaptic space. On the bottom row, at nine
tenths of the learning process, the networks have almost reached their final
states and cover mostly regularly their respective stimuli distributions. The

3The somato-sensorial cortex is located as a diadem beneath the skull, from ear to ear.



2 FUNDAMENTAL PROPERTIES FROM A TOY NETWORK 11

final states are those presented in Figures 3 and 4.

The ”competition” among neurons occurs according to the following stochas-
tic scheme in which a stimulus is defined by its coordinates (x, y) in the
synaptic space, defined as sp,(x,y), (and represented as a blue point on previ-
ous Figures 3 and 4).

At each step p of learning process:

1. a stimulus sp, determined by its coordinates (x, y) in the synaptic
space is randomly chosen among the set of stimuli to be learned. The closest
neuron to it is selected according to the euclidian metric D and is dubbed
”the elected neuron” {i, j}∗:

min
{k,l}∈N

D[(x, y), {k, l}] → {i, j}∗

The metric D : S × S → R+ operates on the synaptic space and mea-
sures the actual distance between one neuron (its synaptic weights) and
one stimulus, or between two neurons, located by their respective synap-
tic weights. It can be euclidian or defined using another measure, as for
example D[X,Y ] = (X − Y )TV −1(X − Y ), where V is the variance-covariance
matrix of the input dataset: V = XTX. This distance will be used later and
named Dm. The euclidian distance De is simply realized when V = I, the
variance-covariance matrix equals the identity matrix.

2. A so-called ball of activity, or neighborhood B{i,j}∗,(p), is then deter-
mined around the elected neuron {i, j}∗ on the network:

B{i,j}∗,(p) =
{
{k, l} ∈ N such that δ[{i, j}∗, {k, l}] ≤ η(p)

}
The metric δ : N × N → R+ operates on the network N , as sketched in
Figures 1 and 2, and measures the actual distances between neurons, on the
network. The network can be given topologies that are different than that of
the square, providing it with a toroidal shape. This option will be exploited
in following section 3.2. The function η(p) solely depends on the step p and
decreases as the learning process goes on, thus gradually reducing the radius
of the ball.

3. All the neurons located in the ball, as defined above, are forced to
move their synaptic weights toward the stimulus (x, y) that is presented at
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this step p in the input space:

∀{k, l} ∈ B{i,j}∗,(p) : {k, l} + τ(p)[(x, y)− {k, l}] → {k, l}

The function τ(p) solely depends on the step p and decreases as the process
goes on, thus gradually reducing the height of the ball, or equivalently, the
intensity of the learning action.

4. This closes the step p, that is incremented by 1 and the cycle is re-
peated.

Both functions η(p) and τ(p) gradually reduce the impact of the learning
process and eventually froze it, thus leaving the network in its learned state.
From a biological point of view, they may be perceived as neurotransmitters,
acting on the whole network at once. They are exhibited in following Figure
12. In this scheme, the unsupervised character of the process emanates from
the random selection of the stimuli. The competition arises from the selec-
tion of an elected neuron (step 1), which then forces its neighbor neurons
located in the activity ball (step 2) to imitate the stimulus presented (step
3)4. Figure 5 shows the topological impact of this action on the synaptic
space.

All these operations will be repeated and extended in the next section,
with data emanating from the real world, in stimuli spaces whose dimensions
will be larger than two. Furthermore, the topology of the network will be
morphed from a square to a torus.

4The religious correspondence to all of this may become clear to any vigilant reader.
In this constellation, a prophet or a pundit corresponds to the elected neuron. He - or
she - takes the lead and forces his - or her - disciples to endorses his - or her - teaching.
People who do not belong to the circle (for us the activity ball) are ignored or expelled.
Unmistakably, the units are no longer neurons in this dared interpretation, but people.
The semantic space becomes the ideological mindset prevailing in this society.
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Figure 5: Sketch of the temporal evolution of the learning process. 2 synapses
network
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2.2 Assignment and Decision, first approach.

Deciding consist in identifying an yet unknown stimulus presented to the
network, and consecutively attributing it an identity. ”Unknown” means that
this stimulus was not present in the learning task submitted to the network.
The decision occurs according to the rule applied in the step 1 of the previous
learning cycle, repeated below. To the unknown stimulus s̃, determined by
its coordinates (x̃, ỹ), is associated the closest neuron {i, j}selected, selected
according to the euclidian metric De:

min
{k,l}∈N

De[(x̃, ỹ), {k, l}] → {i, j}selected

The notion of ”domain on influence” of the {i, j}selected neuron takes its
sense: all unknown stimuli falling in its corresponding Voronöı tile, or district,
receive the traits potentially attributed to this neuron. This notion will be
further discussed and applied in section 4.1.

3 Extension, complexification

After this initial presentation, we increase the complexity of the project in
four directions:

Firstly, we start to work with a vastly more complex and realistic dataset,
related to the characteristics of a bunch of western eurasian countries de-
scribed by a array of more than twenty geographical, societal, governmental
and financial parameters.

At the same time, we modify the topology of the neural network, from
a square to a torus, with the purpose of avoiding the existence of boundary
neurons on the square. Located on a torus, each neuron will be connected
to the full set of its neighbors, thus cancelling any boundary effect from the
network on the learning process.

A standard algebraic scheme called principal components analysis, (an
application of a broader, more abstract theory called spectral analysis), will
enable us to project the synoptic space onto our familiar three dimensional
space. This projection will enable us to better explain the relationship be-
tween synaptic and semantic space.

Finally, extending the considerations developed in the previous section
related to imbalance between frequently and infrequently visited areas in
the synaptic space, we develop two measures, the first one entropic in its
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essence, the second geometric, both suited to measure the quality of the
learning process.

3.1 Extended Dataset

Formulated in the Wolfram Language, the Socioeconomic and Demographic
Data provides seamless access to the curated and continuously updated Wol-
fram Knowledge base, which includes a wide range of types of socioeconomic
and demographic data. Free-form linguistics provides a convenient mech-
anism for accessing all available data; more common categories also have
specific associated Wolfram Language functions. The data presented in this
work was collected from this source in April 2023. The 27 countries and 24
parameters are described in Annex 7.2. In this new situation, the dataset X
is a 27× 24 matrix with coefficients in R.

In our neural parlance, the countries are now dubbed the ”items”, the
”stimuli”, or the ”input”. The geo-political parameters are named ”proper-
ties” or ”characteristics”, according to the thesaurus provided in the annex.
They build a relational matrix that may be pictured as a bipartite graph, or
prosaically as an excel table. They are going to be encoded in the synaptic
weights of the neurons.

The crafty, holistic representation of this relational matrix as a bipartite
graph is presented in Figure 6. It is realized on the Poincare disk5. The
vertices connect countries and properties. Colors code the intensity of a pa-
rameter for a given country. An arc is bluish if the corresponding parameter
is relevant to the connected country, reddish if it is not.

The Poincare disk is a representation of the 2-dimensional hyperbolic
space. The arcs are the geodesics in this space and the boundary circle of
the disk is the set of the points located at infinity. This hyperbolic structure
builds the groundwork of the M.C. Esher disks6. I adopted it solely in ac-
cordance to my aesthetic inclination.

As one notices, no arrow is connecting two countries on the left side,
or two properties on the right side, thus the name ”bipartite graph”. An

5wikipedia.org wiki Poincare disk model
6web.colby.edu/thegeometricviewpoint/2016/12/21/tessellations-of-the-hyperbolic-

plane-and-m-c-escher/
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aim of the present work consist in detecting such secluded connections, or
homologies between countries, making to this purpose use of the information
transported backwards from the right to the left side of the graph through
the learning process. Last, but not the least, the choice of the dataset is
agnostic: no religion, ideology, politics or connection to the European Union
has been taken into consideration here.

Out[ ]=

Figure 6: Holistic representation of the Eurasian dataset as a bipartite graph
drawn on a Poincare disk. This dataset was collected in April 2023.
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3.2 Toroidal network

We modify the topology of the neural network from a square to a torus, with
the purpose of avoiding the existence of boundary neurons on the square.
Located on a torus, each neuron will be connected to the full set of its
neighbors, thus cancelling boundary effects induced on the learning process.

Figure 7: From a square to a toroidal network.

This operation is algebraic in its essence, the modular metric δtore being
substituted to the euclidian metric δeucl initially defined on the square net-
work in Figure 2. {i1, j1} and {i2, j2} define the locations of two neurons on
the network, the size of which is [1, imax] × [1, jmax]. The distance between
the two neurons is then provided by:

δeucl[i1, j1, i2, j2] =

√
[(i1 − i2)

2 + (j1 − j2)
2 ; euclidian

δtore[i1, j1, i2, j2] =
√

Mini
2 +Minj

2 ; toroidal

with →
Mini = Min[Abs[i1 + imax − i2], Abs[i2 − i1], Abs[i1 − imax − i2]]

Minj = Min[Abs[j1 + jmax − j2], Abs[j2 − j1], Abs[j1 − jmax − j2]]
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One notices on the lower panels of following Figure 8 that both vertical
and horizontal boundaries of the network are ”glued” together. This enables
the boundary-free neighbor relations among neurons induced by the topology
of the torus. The upper panels present the euclidian metric on the square as
a reference. On the lower panels, the toroidal distances are computed from
the most bluish neurons and the brightest spots may be considered as their
respective ”antipodal” locations on this fanciful toroidal planet7. On the
upper panels, euclidian distances are computed from the most bluish neurons.
Last but not the least, had we returned the terms in the Abs[i1+ imax− i2] in
the Mini or Minj expressions, then the network would had taken the shape
of a Klein Bottle.

Figure 8: Top panels, euclidian distances. Lower panels, toroidal distances.

7New Zealand and Switzerland are almost antipodal to each other on spherical planet
earth.
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3.3 Integration and first computation

The neural network, now equipped with the structures just described, and
the learning process are operated on the dataset described in the section 3.1.
The learning sequence is exactly the same as presented in section 2.1: the
algorithm and the corresponding software are unchanged, now working on a
toroidal network whose neurons are furnished with 24 instead of 2 synapses.
To the Figure 2 corresponds now the following Figure 9 with the network on
the left and the synaptic or semantic space on the right. Both panels deserve
accurate explanation.

Out[ ]=

Figure 9: Left, Toroidal Neural Network. Right, synaptic, or semantic Space.
Two distance are implemented, the first one, designed by δtore, operates on
the network. The second one, Dm, operates on the synaptic, or semantic
space. As mentioned in the text, this figure is the exact correspondent of the
Figure 2.

Considering the network first (left panel) and recalling the discussion re-
lated to the attribution decision in section 2.2, we now expect to attribute an
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identity to each neuron, provided by the closest item to its synaptic location
in the synaptic space, as provided by the Dm metric.
In our case, as items are countries, neurons are labelled as such and the
”districts” evoked in previous section 2 may now be pictured on Figure 10
below.

Figure 10: Topological gathering on the network. Few districts are colored:
United Kingdom in green. France in blue and Luxemburg in pink illustrate
the toroidal geometry.

Another example of topological gathering, applied on meteorological fields,
is presented in the references [4 and 5]. What about the synaptic, or semantic
space pictured in the right panel of Figure 10? Let us start with an analog
description.

In quantum physics, a physical item, as for example an atom or a molecule,
is described by a mathematical object named the Hamiltonian, describing
how the energy is distributed in the item. Being called an auto adjoint op-
erator in algebra, the hamiltonian has the faculty to generate a basis in the
quantum space in which the item, atom or molecule, lays. The elements
of this basis, called eigenvectors of the auto-adjoint operator, describe the
eigenstates of the physical item (the oscillating modes of the molecule). To
them correspond eigenvalues prescribing the amount of energy attributed to
each eigenstate (perceived as the intensity of the oscillation). They are called
the energy levels attributed to the eigenstates of our molecule. All of this
corresponds to a standard algebraic scheme in data science named Principal
Components Analysis. Applied here, it enables us to project the represen-
tation of the neural network, located in the Rn synaptic space, onto our
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familiar three dimensional space.

Let Y be the N ×n matrix of N = imax× jmax neurons, each furnished
with n synapses. (Each neuron is described as a vector n̄ of dimension 24
(synapses per neuron in our case)). Then the variance covariance matrix
Σ = YTY is symmetric and happens to be our auto-adjoint operator. The
projection of the n̄ synaptic vectors on three eigenvectors of Σ delivers the
three dimensional representation of the network presented in the right panel
of the Figure 10. But, how do we choose those few three among the 24 eigen-
vectors? In ordering their corresponding eigenvalues and and selecting the
three largest.

Eigenvalues quantify energy levels in quantum physics, in our field, data
science, they quantify information. The miniature text featured on the top
of the right panel in Figure 11 reads: ”202211 Eurasian Geopolitics. Ex-
tracted Information: 93%”. This means that 93% of the information
available in the representation of the network in dimension 24 is carried by
the three first eigenvectors. The 7% of information carried by the following
eigenvectors remains secluded in the higher dimensions of the semantic space
and is simply disregarded.

3.4 Entropic & geometrical quality assessment

Further developing the considerations related to imbalance between frequently
and infrequently visited areas of the synaptic space, we develop two measures,
the first one entropic in its essence, the second geometric, both suited to mea-
sure the quality of the learning process.

We start with the entropic approach, based on the famous expression for
the information entropy formulated in 1948 by Claude Shannon:

H = −
imax, jmax∑

i,j=1,1

p(i,j) Log(p(i,j))

Let we name N = imax jmax the number of neurons on the network
N , indeed its size. v(i,j) the number of visits to the neuron {i, j} during
the learning process of m steps. One has m =

∑
i,j v(i,j), then p(i,j) =

v(i,j)
m

,∑
i,j p(i,j) = 1 and ∀{i, j} ∈ N : p(i,j) ≤ 1. Thus, H ≥ 0, all of this as
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expected.

The maximal entropy Hmax corresponds to a state of the learning process
in which all the neurons have received an equal number of visits. This is
expressed as ∀{i, j} ∈ N : v(i,j) =

m
N

= constant and implies that p(i,j) =
v(i,j)
m

= 1
N
. Hence Hmax = −

∑
N

1
N

Log( 1
N
) = + Log(N). Finally, choosing

N as the logarithmic base, one gets Hmax = LogN(N) = 1, thus normalizing
the entropic measure:

H = −
∑

{i,j}∈N

p(i,j) LogN(p(i,j))

This definition is coherent with the assertion presented earlier, repeated
below, and enables the assessment of a learning process.

∀{i, j} ∈ N :

∫
V{i,j}

prob(Ψ ∈ dσ) dσ = constant

As already mentioned, the size of each V{i,j} domain is the tuning pa-
rameter in the previous expression. This property, that appears on the right
panel of Figure 4, is still valid in the present situation. However, the hyper-
Voronöı cells exist in the full dimensional space and I do not know how to
project them onto our familiar three dimensional space8.

Entropy is named an extensive quantity in classical thermodynamics. It
is proportional to the size of the object or the amount of stuff under con-
sideration9. As for example, in astrophysics, the entropy of a black hole is
proportional to the area of its cosmological horizon. In our modest case, the
entropy of the neural network is proportional to its size, given by the num-
ber N = imax jmax of its neurons, in consistency with the formal definition.

The geometric approach is straightforward. It consists in collecting at
each learning step p the distance D[(x̃, ỹ), {k, l}] in the synaptic space be-
tween the stimulus presented and the elected neuron, as already given by the
expression in subsection 2.2:

8Mathematicians and among them primarily topologists know that in higher dimen-
sions, the volume of a sphere is mostly located near its surface. For us, this means that
our hyper-Voronöı cells form in the synaptic space a kind of foam in which the information
is indeed located.

9Contrarily, temperature is an intensive thermodynamical quantity.)
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min
{k,l}∈N

Dm[(x̃, ỹ), {k, l}] → {i, j}selected

Everything can now be collected in a synthetic view pictured in following
Figure 12. The learning procedure described in section 2.1 is operated on
the toroidal network, applied on the Eurasian dataSet pictured in Figure
6. The dynamical evolution of the network, as projected in the semantic
space, is shown in the three lower panels at learning steps 0, 300 and 600.
These panels correspond to those presented in Figure 5. The final state of
the network is presented on Figure 11

Finally, the two decreasing curves are the graphs of the functions η(p)
(blue curve) and τ(p) (gold curve) introduced in section 2.1 and identified as
a kind of numerical neurotransmitters.

It is worth mentioning that the synchrone tuning of all the involved pa-
rameters is a little tricky, trial and error being required. However, after
having reached an empirical optimum, one notices at the experience that the
learning process happens to be quite resilient. In all this tuning business, I
have followed - so far as I could - my favorite tenet consisting in aiming at
the greatest possible simplicity, just beyond triviality.
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Figure 11: Semantic space and grid. It ought to be put in relation with
Figure 6. 93% of the information secluded in Figure 6 is projected in this
3-dimensional representation.
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Figure 12: Evolution of the scores as learning progresses. Abscissa: learning
steps. Ordinate: learning scores. Blue curve: entropic, gold dots, geometric
scores. The slight decreasing of the entropy by the end of the process is
probably caused by some overfitting. Three lower panels: state of the network
at learning steps 0, 300 and 600. These panels correspond to those presented
in Figure 5.
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4 Stochasticity, Assignment, & neural crowds

We now extend the discussion initiated in Section 2.2, ”Assignment and
Decision”, whereas the stochasticity of the learning process is now driving our
reflexion. Unsupervised Competitive Learning is fundamentally stochastic.
Indeed, the initial state of the network, at step zero, is randomly determined
in the tiny initial domain. Then as the selection of the items presented to the
network during the learning process occurs randomly, each new task delivers
a new, unique network, indeed a genuine individual. Figure 13 shows two
semantic networks consecutively generated by the same learning process and
epitomizes, together with the network presented in figure 11, the stochasticity
of the process. All three networks, or semantic spaces, are siblings.

4.1 Assignment & Neural crowds

Networks generated under equal preconditions are clones among themselves.
Similar but not identical to their siblings, they deliver coherent projections
and answers. Thus, instead of developing one single network, it is wiser to
develop a crowd of them and use any kind of voting system in order to infer
an answer provided by this virtual crowd instead of considering an unique
answer that would be akin to ”the winner takes it all” philosophy.

Indeed, although the learning process is demanding, the operation of the
network is not. Taking advantage of this property, it would be easy for
an engineer to implement a crowd of networks in a robot or any kind of
operational device, together with a voting system. The robot would then
take democratic decisions delivered by the crowd and behave accordingly,
with its cognitive capability remaining secluded to its environment. Such a
kind of decision making would provide it with a putatively subtlety enhanced
behavior.

An example of assignment, or decision, is presented in Figure 14. Kaza-
khstan, that did not belong to the learning task presented to the network,
is assimilated to Lithuania by the network. The elected neuron is located in
position {4, 12} on the upper panel, Then, the answer from the network to
the stimulus is presented in the lower left panel. The selective ability of the
network is presented in the lower right panel: the district associated to Swe-
den is well featured in red. Figure 15 exhibits the answer of four networks,
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all trained under the same preconditions, to the task of assigning a known
item (from the learning process), here a country, to the unknown item named
”Kazakhstan”. Three networks assimilate it to Sweden, one to Slovakia.

It may be noted here that no artificial intelligence is at work here, but
solely sturdy algorithmic steered by a lot of stochasticity. However, the algo-
rithm manages to mimic some intelligence when required to identify unknown
items and assign an identity to them. This assignment realizes the expecta-
tion formulated in the title in mapping features on categories. One thinks
here at Daniel C. Dennett’s book ”From Bacteria to Bach and Back” [6] in
which he shows that smart algorithms, and even more crowds of them, may
well exhibit some intelligent behavior without being by themself intelligent.
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Figure 13: Two instances of the learning process deliver two different seman-
tic grids. Figure 11 shows another one.
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Figure 14: Decision: Kazakhstan is assimilated to Lithuania by the network.
The toroidal topology is well visible on each of the three panels. This Figure
corresponds to the left panels of Figures 2 and 9.
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Figure 15: Four clones of the network at work: Israel is assimilated four
times to Ireland by these four networks. The four panels correspond to the
left panels of Figures 2 and 9.
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5 Interpretation

Considering again Figure 6, one notices that we have dealt with the left part
of the disk so far. The items, indeed the countries, have been featured, but
their properties, distributed on the right side of the disk, remained hidden,
coded in the synaptic weights of the network. Our next (last) action in
this essay will now consist in making them visible. At this level of the work,
this is solely an exercise in data visualization consisting in the following steps:

1. Establish a two dimensional picture by the projection of the previous
3 dimensional diagrams on their 1+2 , 1+3 or 2+3 eigenvectors (principal
components). The edges of the networks will then no longer be pictured.

2. Select two parameters among the set of available parameters on the
right side of the disk in Figure 6 (or, equivalently, from the annex 7.3).

3. Exhibit the neurons on the 2D projections as disks according to the
following convention:

- The surface of the disk is proportional to the relevance of the first
parameter.

- The color of the disk codes the second parameter with low relevance in
red, high relevance in blue. Of course, a parameter can be selected twice,
then either producing a large blue, or a tiny red disk.

All of this is programmed in an executable piece of Mathematica software
that enables the selection of the projection and the parameters. Following
four figures, drawn with this tool, exhibit few among many options. Obvi-
ously, the cluster of countries located right to the centre of the figure, together
with the Scandinavian cluster, happens to be emerging as a stronghold in the
western eurasian constellation.
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Figure 16: Projection on the 1+2 axes. Information collected: 88%. Selected
parameters: Gross Domestic Product per capita: size of the disk. GDP Real
Growth: color. Similarly countries such as {United Kingdom, France, Italy,
Spain} are located in corresponding clusters. Be aware of the fact that closely
located countries may be distant in the third, here not presented dimension,
as for example {Denmark, Norway and Luxemburg} versus {Portugal and
Greece} in the upper cluster. Compare with the following Figures 18 and 19.
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Figure 17: Projection on the 1+2 axes, indeed the same projection as the pre-
vious figure. Information collected: 88%. Selected parameters: Government
Consumption: size of the disk. Government Debt: color. One notices two
clusters, the first one bluish with ”old” western European countries below,
and the second one reddish above, whose countries obviously implement other
governmental procedures.
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Figure 18: Projection on the 1+3 axes. Information collected: 87%. Selected
parameters: Industrial Value Added: size of the disk. Industrial Production
Growth: color. {Ireland, Austria, Hungary, Poland, Czech Republic and
Turkey }, to a less extend {Lithuania and Finland} are spotting momentum
in this respect.
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Figure 19: Projection on the 1+3 axes, indeed the same projection as the
previous figure. Information collected: 87%. Selected parameters: Birth Rate
Fraction: size of the disk. Migration Rate Fraction: color. In all these
representations, {Germany, Russia and Turkey} are rejected in the corners
and happen to be seen as outliers within the eurasian crowd.
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6 Conclusion

Humbly considered, no artificial intelligence has been at work here, but solely
sturdy algorithmic steered by a good deal of stochasticity. However, the
USCL algorithm manages to mimic some intelligence when it is required to
identify unknown items and assign an identity to them. This assignment re-
alizes the expectation ”Mapping features onto categories” formulated in the
title.

Considered from a higher level, the overarching process presented in this
essay bears the topology of a loop.

One starts with the contemplation of a yet informal object, in our case
a bunch of western eurasian countries. This contemplation is given a formal
and, as far as possible, rational structure by the use of well curated statistics.
A first hint of arbitrariness is introduced by the choice of the parameters
considered, according to appendix 7.2.

USCL, conceived to detect homogeneities and correlation among this sta-
tistical material, delivers a topological structure that we dubbed the syntac-
tic or semantic grid, presented in Figures 9 and 11. Further two-dimensional
projections presented in Figures 16 to 19 and the graphical implementation
of parameters make the information secluded in the statistical data accessible
to the human eye, and brain.

At this point, an expert, or pundit, and his - her - brain, has to interpret
the graphical features exhibited on the Figures, and he projects his - her -
interpretation back onto the initial items, here the western eurasian countries.
It is worth stressing that the interpretation occurs on the features projected
by the semantic grid, and not on the initial items, the western eurasian
countries.

This closes the loop. The countries are given attributes and properties, as
well as relationships among themselves, that result from the interpretation
by an intelligent pundit of the features exhibited on the semantic grid. Ergo,
smart algorithms, and even more crowds of them, may well exhibit some in-
telligent behavior without being by themself intelligent. Solely the expertise
of the pundit, tainted by her experience, inclination and subjectivity, injects
some interpretative intelligence into the loop.

Two remarks are in order. The first one is philosophical in its essence,
the second brings us back to bionics.
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Categories have been a philosophical topic since Aristoteles, about 25 cen-
turies ago. Leibniz and his monades, Kant, Hegel and many others have re-
fined the categorical concept over all the centuries. In twentieth century, cate-
gorical thinking has reached mathematics, mainly through algebraic topology
thanks to the seminal work by Saunders and Mac Lane. In our 21 century,
Emily Riehl and Dominic Verity have raised the concept to unexpected ab-
straction with their ∞ − Category Theory. Introductions to this subject
are provided in references [7 and 8]. The categorical ideas presented in this
essay have been pragmatic and lead us back to bionics via an aeronautical
analogy.

Until the end of the 19th. century, aviation pioneers tried to imitate
flapping bird flight. Starting in the 20th. century, engineers designed their
aircraft by moving away from this paradigm. A century later, Airbuses fly
over the oceans with 500 people on board, a feat unattainable by nature, but
these planes are no longer conceived to perch on an electric wire, something
any swallow accomplishes with ease.

A similar development is underway in the artificial intelligence sciences.
While systems invented in the 20th century attempted to approximate hu-
man intelligence10, thus following a bionic approach, current research often
liberates itself from that reference.

Thus, we will increasingly be confronted to machines and algorithms that
will exhibit autonomous and non-human learning capabilities. These ma-
chines will not only find their references in the real world through feelers,
sensors and observation systems, but mostly in the virtual world of internet
and the metaverse. Current artificial intelligent systems already access un-
fathomable amounts of data and are operated on gigantic computer farms.
Any comparison between them and and the puny software presented here is
purposeless.

10According for example to the ”Turing Test.”
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7 Annexes

7.1 Meteorological Network

In its simplest architecture (Figure 1), the neural network consists of a
square array of 12 x 12 neurons, each neuron equipped with a bundle of 200
synapses that are both information sensors and analogue storage elements.
The synapses are projected from each neuron onto the vertices of a grid of
10 x 10 points on a map of the whole of Central Europe. The measured me-
teorological data on each of these vertices corresponds to an altitude of air
pressure of 500 millibars (geopotential 500 hecto-pascals) and temperature
at altitude of 850 HPa. Each neuron is equipped with 10 × 10 × 2 = 200
synapses and the network registers a weather situation through a system of
12 × 12 × 200 = 28′800 synapses. In practice, these data are provided by
a numerical forecast model as a matrix of numbers. The network executed
by Meteo Swiss, whose toroidal shape is more complex, and is described in
section 3.2.

Figure 20 describes the pattern learned by neuron classified 2,5 on the
network (2th. line, 5th. column on Figure 1). The general air circulation
over Europe is represented, on the one hand, by the 500 hPa contour lines
and, on the other hand, by the areas of temperature distribution, where blue
and green represent cold regions, yellow and red warm regions. The map
covers a zone extending from Portugal (lower left) to Poland (upper right),
the sea coasts and national borders are outlined, with Switzerland a little
to the right of the center. Coordinates are latitude and longitude. Meteo-
rologically, a cyclonic depression over the Sicily can be seen, as well as the
general north-easterly flow north of the Alps and the outskirt of a High lo-
cated over the North Atlantic. On the lower panel, the synaptic field of the
same neuron 2,5 is shown in three dimensions. Coordinates are latitude and
longitude. The vertical axis represents the geopotential height of the pressure
field of 500 hPa expressed in hectometers. The wind field is computed from
the geopotential field with the cyclonic depression over Sicilia. The temper-
ature distribution and pressure level are indicated by the color and height of
the arrows at each location. The basic characteristic of this representation
is that it is not a meteorological map, but a description of the network’s
perception of such a situation. This is another encounter of the dual concept
of the synaptic ↔ semantic space. Neural based assessment systems based
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on ECMWF11 ensemble forecasts were implemented in the operation suites
of Meteo Swiss by the end of the century and have been routinely operated
since then. These algorithms are mainly used to assess the predictability of
ensemble numerical weather forecasts. Consult reference [4] for more infor-
mation.

What happens to the people who are confronted with such systems?
While in the weather services of the past meteorologists worked in the pro-
duction chain of weather information, from now on they are often placed
above this chain and monitor it. A similar transition took place in ancient
shipping: On a galley, propulsion was provided by the oarsmen. On sailing
ships, however, sailors rig the sails and the wind propels their ship. Applied
to our subject, where the intelligent work, rather than the power, is done by
the machines, this shift triggers a humbling question: ”either my work was
intelligent, and the machine that replaces me must be at least as intelligent
as I was, or else the machine is stupid, but then how was my work...? ”.
The reality, however, is by no means so Manicheean; in fact, meteorologists
remain valuable advisors to their clients. However, their role has changed
and requires outstanding communication skills.

11European Center for Medium Range Weather Forecast.
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Figure 20: Upper panel: On this neuron, classified 2,5 (2th. line, 5th. col-
umn in Figure 1), the weather circulation over Europe is represented, on
the one hand, by the 500 hPa contour black lines and the temperature (red
warm, green cold). Lower panel Synaptic field of the same neuron 2,5 in
three dimensions. Coordinates are latitude and longitude. The vertical axis
represents the geopotential field at 500 hPa expressed in hectometers.
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7.2 Geopolitical Dataset

Formulated in the Wolfram Language, the Socioeconomic and Demographic
Data provides seamless access to the curated and continuously updated Wol-
fram Knowledge base. 27 western eurasian countries were arbitrarily selected
in April 2023 for this exercise, as well as two extra countries serving as bench-
marking for assignment trials:

• Germany, France, Switzerland, Italy, Austria, United Kingdom, Ire-
land, Belgium, Luxembourg, Netherlands, Denmark, Sweden, Norway,
Finland, Spain, Greece, Portugal, Poland, Lithuania, Czech Republic,
Hungary, Romania, Slovakia, Ukraine, Serbia, Turkey, Russia.

• Kazakhstan, Israel.

Each country is characterized by 24 parameters:

• Land Area, Population, Population Growth, Birth Rate Fraction, Mi-
gration Rate Fraction.

• Female Literacy Fraction, Male Literacy Fraction, Female Life Ex-
pectancy, Male Life Expectancy, Female Infant Mortality Fraction,
Male Infant Mortality Fraction.

• Military Expenditure Fraction, Government Consumption, Government
Debt, Unemployment Fraction, Inflation Rate, Gini Index.

• Gross Investment, Agricultural Added Value, Industrial Added Value,
Industrial Production Growth.

• Gross Domestic Product, Gross Domestic Product Per Capita, Gross
Domestic Product Real Growth.

Few examples describe the nature of the data:

• Switzerland, land area: 41’247 square kilometers.

• Belgium, industrial production growth: 0.2% per year.

• Israel, gross investment: 8.75 1010 US Dollars per year.
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• Italy, Government debt: 2.57 1012, US Dollars.

• France, unemployment fraction: 9.3972%.

• Turkey, GDP per capita: 8588.2 US Dollars per person per year.

• United Kingdom, male infant mortality fraction: 0.00567 people per
people.

As already mentioned, the choice is totally agnostic: no religion, ideology,
politics or connection to the European Union has been taken into consider-
ation here.

Ireland
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Dual presentation. All countries, one property: GDPRealGrowth

Figure 21: A fanciful representation of the dataset. The items - countries -
are randomly spread on the surface, with the size of the writing proportional to
one of their properties, in this case the Gross Domestic Product Real Growth.
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7.3 Thesaurus

Following designations used in the essay cover almost identical concepts:

• Neuron, Unit.

• Synapse, Connection.

• Item, Stimulus, Input.

• Synaptic or Semantic Space, Semantic grid.

• Properties, Characteristics, Synaptic Weights.

• Neural Network, Neural Grid, Neural Array.

• Voronöı Tile, District.

• Decision, Affectation, Interpretation.

• Expert, Pundit, Prophet.

7.4 The application and its modular structure.

At its current state of development, the use of the software remains a chal-
lenge. Next figure provides a glance on the operative sequence. Grey con-
tainers are data intermediary lagers. Blue boxes depict software operators.
Terminator grey arrows point to the pictures exhibited in this essay.
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Figure 22: Data Flow and software modules. Follow the purple paths in order
to grasp the overall algorithmic stream.
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